
synergy.cs.vt.edu-

An Ecosystem for the New HPC:
Heterogeneous Parallel Computing

Wu FENG

Director
SEEC Center (Synergistic Environments for Experimental Computing)

Professor and Elizabeth & James E. Turner Fellow
Dept. of Computer Science
Dept. of Electrical & Computer Engineering
Health Sciences
Virginia Bioinformatics Institute

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

A Little Bit About Me …

•  Education
–  Ph.D., Computer Science
 U. Illinois at Urbana-Champaign, 1996

•  Professional
–  Current Appointments

!  Professor and Elizabeth & James Turner Fellow; Departments of Computer
Science, Electrical & Computer Engineering, and Health Sciences; Virginia Tech

!  Director, Laboratory (http://synergy.cs.vt.edu/) " SEEC Center
!  Founder, The Green500 (http://www.green500.org/)
!  Adjunct Faculty, Virginia Bioinformatics Institute, Virginia Tech

–  Previous Appointments & Professional Stints
!  Academia: The Ohio State U. (’00-’03), Purdue U. (’98-’00), U. of Illinois at

Urbana-Champaign (’96-’98).
!  Government: Los Alamos Nat’l Lab (’98-’06), NASA Ames Research Ctr (’93)
!  Industry: IBM T.J. Watson Rsch (’90), Vosaic (’97), Orion Multisystems (’04-’05)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

A Little Bit About My Research …

•  Basic and applied research in efficient parallel and distributed
computing (in the small and the large) via the synergistic co-
design of hardware, software, and algorithms
–  Enable scientists and engineers to concentrate

on their science and engineering rather than
on the computer science and engineering.

VT

Commoditization and
Ease of Use

Domain
Sciences,

Engineering,
Commerce,

Arts

Parallel
Computing

Algorithms
216x

Software
4x

Hardware
88x

80,000x

http://www.youtube.com/watch?v=zPBFenYg2Zk

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

An Ecosystem for the New HPC:
Heterogeneous Parallel Computing

Wu#FENG#

Professor-and-Elizabeth-&-James-E.-Turner-Fellow-
Dept.-of-Computer-Science--
Dept.-of-Electrical-&-Computer-Engineering-
Health-Sciences-
Virginia-BioinformaEcs-InsEtute-

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

© W. Feng, 2011-2015
Los Alamos National Laboratory

Japanese ‘Computnik’ Earth Simulator
Shatters U.S. Supercomputer Hegemony

synergy.cs.vt.edu-

Importance of High-Performance Computing (HPC)

Competitive Risk From Not Having Access to HEC

3%

16%

34%

47%

Could exist and compete

Could not exist as a business

Could not compete on quality &
testing issues

Could not compete on time to market
& cost

Data from Council of Competitiveness.
Sponsored Survey Conducted by IDC

Competitive Risk From Not Having Access to HPC

 Only 3% of companies could exist and
compete without HPC.
#  200+ participating companies, including

many Fortune 500 (Proctor & Gamble and
biological and chemical companies)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Computnik 2.0?-

•  The Second Coming of Computnik? Computnik 2.0?-
–  No-…-“only”-43%-faster-than-the-previous-#1-supercomputer,-but-
- - -"-$20M-cheaper-than-the-previous-#1-supercomputer-
- - -"-42%-less-power-consumpEon-

•  The-Second Coming of the “Beowulf Cluster” for HPC
–  The further commoditization of HPC

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

The First Coming of the “Beowulf Cluster”

•  Utilize commodity PCs (with commodity
CPUs) to build a supercomputer

The Second Coming of
the “Beowulf Cluster”

•  Utilize commodity PCs (with commodity
CPUs) to build a supercomputer
 +

•  Utilize commodity graphics processing
units (GPUs) to build a supercomputer

© W. Feng, 2011-2015
Los Alamos National Laboratory

Issue: Extracting performance with programming ease and portability " productivity
In other words, can we achieve “Performance + Programmability + Portability = Productivity?”

synergy.cs.vt.edu-

GPU Computing
(Specialized)

CPU Computing
(General Purpose)

+

CPU + GPU ≈ Left Brain + Right Brain

Heterogeneous Parallel Computing

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

“Holy Grail” Vision
•  Ecosystem for the New HPC: Heterogeneous Parallel Computing

–  Enabling software that tunes parameters of hardware devices
… with respect to performance, programmability, and portability
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps

Highest-ranked commodity supercomputer
in U.S. on the Green500 (11/11)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-
© W. Feng, 2011-2015

Los Alamos National Laboratory

Design of
Composite
Structures

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

synergy.cs.vt.edu-

An Ecosystem for Heterogeneous Parallel Computing

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

CFD for
Mini-Drones

Applications

^

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

An Ecosystem for Heterogeneous Parallel Computing

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

CFD for
Mini-Drones

Applications

^

© W. Feng, 2011-2015
Los Alamos National Laboratory

… and then our inter-node ecosystem,
along with application to BIG DATA

(e.g., StreamMR)

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

Goal: Minimize the re-writing of code, e.g., CFD for mini-drones.
CUDA " OpenCL and OpenMP " OpenACC

synergy.cs.vt.edu-

Programming GPUs

CUDA
•  NVIDIA’s proprietary framework

OpenCL
•  Open standard for heterogeneous parallel computing

(Khronos Group)
•  Vendor-neutral environment for CPUs, GPUs,

APUs, and even FPGAs

OpenACC
•  An extension of OpenMP for GPUs

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

CUDA-Accelerated Applications

© W. Feng, 2011-2015
Los Alamos National Laboratory

GOVERNMENT & DEFENSE
Ikena: Imagery Analysis and Video Forensics
Signal Processing Library: GPU VSIPL
IDL and MATLAB® Acceleration: GPULib
GIS: Manifold

MOLECULAR DYNAMICS, COMPUTATIONAL
CHEMISTRY
OpenMM library for molecular dynamics on GPUs
GROMACS using OpenMM
NAMD molecular dynamics
VMD visualization of molecular dynamics
HOOMD molecular dynamics
Acellera: ACEMD bio-molecular dynamics package
BigDFT: DFT (Density functional theory) electronic
structure
MDGPU
GPUGrid.net

LIFE SCIENCES, BIO-INFORMATICS
GPU HMMER
DNA Sequence alignment: MUMmerGPU
LISSOM: model of human neocortex using CUDA
Silicon Informatics: AutoDock

ELECTRODYNAMICS AND ELECTROMAGNETIC
Acceleware: FDTD Solver
Acceleware: EM Solutions
Remcom XStream FDTD
SPEAG Semcad X
CST Microwave Studio

Quantum electrodynamics library
GPMAD : Particle beam dynamics simulator

MEDICAL IMAGING, CT, MRI
RealityServer
GPULib:IDL acceleration
Acceleware: Imaging Solutions
Digisens: SnapCT tomographic reconstruction software
Techniscan: Whole Breast Ultrasound Imaging System

OIL & GAS
Acceleware: Kirchoff and Reverse Time Migration
SeismicCity: 3D seismic imaging for prestack depth migration
OpenGeoSolutions: Spectral decomposition and inversion
Mercury Computer systems: 3D data visualization
ffA: 3D Seismic processing software
Headwave: Prestack data processing

FINANCIAL COMPUTING AND OPTIONS
PRICING
SciComp: derivatives pricing
Hanweck: options pricing
Exegy: Risk Analysis
Aqumin: 3D Visualization of market data
Level 3 Finance
OnEye (Australia): Accelerated Trading Solutions
Arbitragis Trading

MATLAB, LABVIEW, MATHEMATICA, R
CUDA Acceleration for MATLAB
Accelereyes: Jacket™ engine for MATLAB

GPULib: mathematical functions for IDL and MATLAB
Integrating Simulink with CUDA using S-functions
Enabling GPU Computing in the R Statistical Environment
Mathematica plug-in for CUDA
National Instruments LabView for NVIDIA GPUs

ELECTRONIC DESIGN AUTOMATION
Agilent EESof: ADS SPICE simulator
Synopsys: Sentaraus TCAD
Gauda: Optical proximity correction (OPC)

WEATHER AND OCEAN MODELING
CUDA-accelerated WRF code

VIDEO, IMAGING, AND VISION APPLICATIONS
Axxon Intellect Enterprise Video Surveillance Software
Pflow CUDA Plugin for Autodesk 3ds Max
RUINS Shatter CUDA Plug-in for Maya
Bullet 3D Multi-Physics Library with CUDA Support
CUDA Voxel Rendering Engine
Furryball: Direct3D GPU Rendering Plugin for Maya

See:'h)p://www.nvidia.com/object/cuda_app_tesla.html'

synergy.cs.vt.edu-

OpenCL: Write Once, Run Anywhere

© W. Feng, 2011-2015
Los Alamos National Laboratory

CUDA Program

CU2CL (“cuticle”)

OpenCL-supported CPUs, GPUs, FPGAs NVIDIA GPUs

OpenCL Program

synergy.cs.vt.edu-

CU2CL:
CUDA-to-OpenCL Source-to-Source Translator†

•  Works as a Clang plug-in to leverage its production-quality
compiler framework
–  Update: Works as a standalone app!

•  Covers primary CUDA constructs found in CUDA C and
CUDA run-time API.

•  Delivers performance portability when OpenCL 1.2-equivalent
CUDA code run on same NVIDIA GPU.

•  Focuses on functional portability … for now.

© W. Feng, 2011-2015
Los Alamos National Laboratory

† “CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures,”
17th IEEE Int’l Conf. on Parallel & Distributed Systems (ICPADS), Dec. 2011.

synergy.cs.vt.edu-

Why CU2CL?
•  Much larger # of apps implemented in CUDA than in OpenCL

–  Idea
!  Leverage scientists’ investment in CUDA to drive OpenCL adoption

–  Issues (from the perspective of domain scientists)
!  Writing from Scratch: Learning Curve
 (OpenCL is too low-level an API compared to CUDA. CUDA also low level.)
!  Porting from CUDA: Tedious and Error-Prone

•  Significant demand from major stakeholders (and Apple …)

© W. Feng, 2011-2015
Los Alamos National Laboratory

Why Not CU2CL?
•  Just start with OpenCL?!
•  CU2CL only does source-to-source translation at present

–  Functional (code) portability? Yes.
–  Performance portability? Mostly no.

synergy.cs.vt.edu-

Programmability & Portability vs. Performance

__global__
void MatMul(float* d_M,
 float* d_N,
 float* d_P,
 int W) {
 int row = threadIdx.y;
 int col = threadIdx.x;
 float P_val = 0;
 for (int k = 0; k < W; ++k) {
 float M = d_M[row * W+ k];
 float N = d_N[k * W+ col];
 P_val += M*N;
 }
 d_p[row*W+col] = P_val;
}

void MatMul(float* M, float* N,
 float* P, int W) {

 for (int i=0; i<W; ++i)
 for (int j=0; j<W; ++j) {
 for (int k=0; k<W; ++k) {
 P[i*W+j] += M[i*W+k]*
 N[k*W+j];
 }
 }
}

void MatMul(float * restrict M,
 float * restrict N,
 float* restrict P, int W) {
 int i, j, k ;
 #pragma acc kernels
 copyout(P[0:(W*W)]),
 copyin(M[0: (W*W)],N[0:(W*W)])
 for (i=0; i<W; i++){
 for (j=0; j<W; j++) {
 for (k=0; k<W; k++)
 P[i*W+j]+=M[i*W+k]*
 N[k*W+j] ;
 }
 }

}

__kernel
void MatMul(global float� M,
 global float� N,
 global float� P,
 int W) {
 int tx=get_global_id(0);
 int ty=get_global_id(1);
 for(int k=0; k<W; ++k) {
 value+=A[ty�W+k]�B[k�W+tx];
 }
 C[ty�W+tx]=value;
}

C OpenACC CUDA OpenCL

Most Programmable Least Programmable

float *d_M, *d_N, *d_P;
int matrix_size=Width*Width*sizeof(float);
cudaMalloc(&d_M, matrix_size);
cudaMemcpy(d_M, M, matrix_size,
 cudaMemcpyHostToDevice);
cudaMalloc(&d_N, matrix_size);
cudaMemcpy(d_N, N, matrix_size,
 cudaMemcpyHostToDevice);
cudaMalloc(&d_P, matrix_size);
dim3 dimGrid(1,1);
dim3 dimBlock(Width,Width);
MatMul<<<dimGrid, dimBlock>>>(d_M, d_
N, d_P, Width);
cudaMemcpy(P,d_P,matrix_size,
 cudaMemcpyDeviceToHost);
cudaFree(d_P);
cudaFree(d_M);
cudaFree(d_N);

/*Code contains parts adapted from code originally written by Tim Mattson
and obtained from: https://github.com/HandsOnOpenCL/Exercises-Solutions/blob/master/Solutions/Exercise08/
*/
char * kernelsource;
cl_int err;
cl_device_id device;
cl_context context;
cl_command_queue commands;
cl_program program;
cl_kernel kernel;
size = W*W;
h_A = (float *)malloc(size*sizeof(float));
h_B = (float *)malloc(size*sizeof(float));
h_C = (float *)malloc(size*sizeof(float));
cl_uint deviceIndex = 0;
parseArguments(argc, argv, &deviceIndex);
cl_device_id devices[MAX_DEVICES];
unsigned numDevices = getDeviceList(devices);
if (deviceIndex >= numDevices)
{
 printf("Invalid device index\n");
 return EXIT_FAILURE;
}
device = devices[deviceIndex];
char name[MAX_INFO_STRING];
getDeviceName(device, name);
printf("\nUsing OpenCL device: %s\n", name);
context = clCreateContext(0, 1, &device, NULL, NULL, &err);
checkError(err, "Creating context");
commands = clCreateCommandQueue(context, device, 0, &err);
checkError(err, "Creating command queue");
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float) * size, h_A, &err);
checkError(err, "Creating buffer d_a");
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float) * size, h_B, &err);
checkError(err, "Creating buffer d_b");
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(float) * size, NULL, &err);
checkError(err, "Creating buffer d_c");
kernelsource = getKernelSource(“matmul.cl");
program = clCreateProgramWithSource(context, 1, (const char **) &kernelsource, NULL, &err);
checkError(err, "Creating program with matmul.cl");
free(kernelsource);
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
 size_t len;
 char buffer[2048];
 printf("Error: Failed to build program executable!\n%s\n", err_code(err));
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
 printf("%s\n", buffer);
 return EXIT_FAILURE;
}
kernel = clCreateKernel(program, “MatMul”, &err);
checkError(err, "Creating kernel with matmul.cl");

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
 err |= clSetKernelArg(kernel, 3, sizeof(int), &W);

checkError(err, "Setting kernel args");
const size_t global[2] = {W, W};
err = clEnqueueNDRangeKernel(
 commands,
 kernel,
 2, NULL,
 global, NULL,
 0, NULL, NULL);
checkError(err, "Enqueueing kernel");
err = clFinish(commands);
checkError(err, "Waiting for kernel to finish");
err = clEnqueueReadBuffer(
 commands, d_c, CL_TRUE, 0,
 sizeof(float) * size, h_C,
 0, NULL, NULL);
checkError(err, "Reading back d_c");

… but portable!

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

CU2CL Translation and Performance

•  Automatically translated OpenCL codes (via CU2CL) yield
similar execution times to manually translated OpenCL codes
(when running on the same device)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Application CUDA Lines Lines Manually
Changed

% Auto-
Translated

bandwidthTest 891 5 99

BlackScholes 347 14 96

matrixMul 351 9 97

vectorAdd 147 0 100

Back Propagation 313 24 92

Hotspot 328 2 99

Needleman-Wunsch 430 3 99

SRAD 541 0 100

Fen Zi: Molecular Dynamics 17,768 1,796 90

GEM: Molecular Modeling 524 15 97

IZ PS: Neural Network 8,402 166 98

© W. Feng, 2011-2015
Los Alamos National Laboratory

Delaware

VT

AMD

synergy.cs.vt.edu-

Evaluating & Enhancing Productivity with CU2CL

•  Binary: CU2CL v0.7.0b (May 2015)
–  Major revision – Multi-file Translation Support
–  Overhauled invocation – “One-shot” translation of all files

–  Overhauled OpenCL generation – Intelligent merging and de-duplication

•  Source: CU2CL v0.6.2b (May 2015)

CUDA
File

CU2C
L CUDA

File

CU2C
L CUDA

File

CU2C
L

Old Version

One launch per source file

CUDA
File

CU2CL
CUDA

File
CUDA

File

New Version

One launch per project

CUDA
File

CUDA
File

Old Version

OpenCL
File

OpenCL
File OpenCL

File

OpenCL
File

Rewriter Rewriter

Conflicts with shared headers!

CUDA
File

CUDA
File

New Version

Each output only generated once!

Replacements Replacements

OpenCL
File

Rewriter

OpenCL
File

Rewriter

OpenCL
File

Rewriter

© W. Feng, 2011-2015
Los Alamos National Laboratory

See Github and
http://chrec.cs.vt.edu/

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

IEEE ICPADS ’11
P2S2 ’12

J. Parallel Computing ’13

Productivity = Performance + Programmability + Portability

What about
performance portability?

•  G. Martinez, M. Gardner, W. Feng, “CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures,” 17th IEEE
Int’l Conf. on Parallel & Distributed Systems (ICPADS), Dec. 2011.

•  P. Sathre, M. Gardner, W. Feng, “Lost in Translation: Challenges in Automating CUDA-to-OpenCL Translation,” 5th Int’l Workshop
on Parallel Programming Models and Systems Software for High-End Computing (P2S2), September 2012.

•  M. Gardner, P. Sathre, W. Feng, and G. Martinez, “Characterizing the Challenges and Evaluating the Efficacy of a CUDA-to-
OpenCL Translator,” Journal of Parallel Computing, 39(12): 769-786, December 2013.

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Computational Units Not Created Equal

•  “AMD CPU ≠ Intel CPU” and “AMD GPU ≠ NVIDIA GPU”
•  Initial performance of a CUDA-optimized N-body dwarf

© W. Feng, 2011-2015
Los Alamos National Laboratory

-32%

synergy.cs.vt.edu-

Basic Execution & Architecture-Unaware Execution

© W. Feng, 2011-2015
Los Alamos National Laboratory

163
192

328

88

224

371

0

100

200

300

400

Basic Architecture unaware Architecture aware

Sp
ee

du
p

ov
er

 h
an

d-
tu

ne
d

SS
E

NVIDIA GTX280 AMD 5870

12%

synergy.cs.vt.edu-

Combined

Optimization for N-body Molecular Modeling

•  Optimization techniques on
AMD GPUs
–  Removing conditions " kernel

splitting
–  Local staging
–  Using vector types
–  Using image memory

•  Speedup over basic OpenCL
GPU implementation
–  Isolated optimizations
–  Combined optimizations

© W. Feng, 2011-2015
Los Alamos National Laboratory

Isolated

MT: Max Threads; KS: Kernel Splitting; RA: Register Accumulator;
RP: Register Preloading; LM: Local Memory; IM: Image Memory;
LU{2,4}: Loop Unrolling{2x,4x}; VASM{2,4}: Vectorized Access &
Scalar Math{float2, float4}; VAVM{2,4}: Vectorized Access & Vector
Math{float2, float4}

synergy.cs.vt.edu-

Summary: Architecture-Aware Optimization

© W. Feng, 2011-2015
Los Alamos National Laboratory

163
192

328

88

224

371

0

100

200

300

400

Basic Architecture unaware Architecture aware

Sp
ee

du
p

ov
er

 h
an

d-
tu

ne
d

SS
E

NVIDIA GTX280 AMD 5870

With only software changes:
6 hours " 58 seconds 12%

synergy.cs.vt.edu-
© W. Feng, 2011-2015

Los Alamos National Laboratory

For additional details, see
M. Daga*, T. Scogland*, and W. Feng,
“Architecture-Aware Mapping and
Optimization on a 1600-Core GPU,”
17th IEEE Int’l Conf. on Parallel and
Distributed Systems (ICPADS), Dec. 2011.

… for an N-Body Code (GEM)
… on AMD Radeon 5870 GPU
and on NVIDIA GTX 280 GPU

Architecture-Aware Optimizations

synergy.cs.vt.edu-

Critique: Architecture-Aware Optimizations

•  Architecture
–  The Good: Two similar-generation GPUs are compared.
–  The Bad: The architectures are relatively old (circa 2008-2009).
The architectures served the purpose of demonstrating the importance
of architecture-aware optimizations.

•  Workload
–  The Good: A real application code (i.e., GEM – an n-body molecular

modeling code) is optimized
–  The Bad: Only one application code is optimized.
What would be the impact of the architecture-aware optimizations be on
other application workloads?

•  Manual Optimization " Automatic Optimization

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Critique: Architecture-Aware Optimizations

•  Architecture
–  The Good: Two similar-generation GPUs are compared.
–  The Bad: The architectures are relatively old (circa 2008-2009).
The architectures served the purpose of demonstrating the importance
of architecture-aware optimizations.

•  Workload
–  The Good: A real application code (i.e., GEM – an n-body molecular

modeling code) is optimized
–  The Bad: Only one application code is optimized.
What would be the impact of the architecture-aware optimizations be on
other application workloads?

•  Manual Optimization " Automatic Optimization

© W. Feng, 2011-2015
Los Alamos National Laboratory

Address first two now …

synergy.cs.vt.edu-

FFT: Fast Fourier Transform

•  A spectral method that is
a critical building block
 across many disciplines

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Peak Specifications of GPU Cards

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Peak SP Performance & Peak Memory Bandwidth

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Summary of Optimizations

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Optimizations

•  RP: Register Preloading
–  All data elements are first preloaded into the register file before use.
–  Computation facilitated solely on registers

•  LM-CM: Local Memory (Communication Only)
–  Data elements are loaded into local memory only for communication
–  Threads swap data elements solely in local memory

•  CGAP: Coalesced Global Access Pattern
–  Threads access memory contiguously

•  VASM{2|4}: Vector Access, Scalar Math, float{2|4}
–  Data elements are loaded as the listed vector type.
–  Arithmetic operations are scalar (float × float).

•  CM-K: Constant Memory for Kernel Arguments
–  The twiddle multiplication state of FFT is precomputed on the CPU

and stored in GPU constant memory for fast look-up.

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Architecture-Optimized FFT

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Architecture-Optimized FFT
(Batched, Single Precision, 1-D, 16-pt)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Multi-GPU Scaling
•  Near-linear performance scaling using multiple GPUs.

–  Domain decomposition, with each domain partition residing on one GPU for
duration of simulation (only ghost cells had to be exchanged on each iteration).

–  One control CPU thread per GPU.
–  PGI 14.1 compiler can generate code for AMD GPUs in addition to NVIDIA.

0

50

100

150

200

250

1 2 3 4

Pe
rf

or
m

an
ce

 (
G

FL
O

P
S)

Number of GPUs

NVIDIA
c2070

NVIDIA k20x

AMD 7990

Two AMD GPUs from AMD Radeon 7990
vs. four NVIDIA C2070 GPUs

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

A sampling of relevant pubs:
GPU Computing Gems
BMC Bioinformatics

J. Molecular Graphics & Modeling
IEEE Cluster ’11
IEEE ICPADS ’11
IEEE HPCC ’12

ACM/IEEE SC ’13
IEEE ICC ’13

ACM Computing Frontiers ’14

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Roadmap

•  R. Anandakrishnan, T. Scogland, A. Fenley, J. Gordon, W. Feng, A. Onufriev, “Accelerating Electrostatic Surface Potential
Calculation with Multiscale Approximation on Graphics Processing Units,” J. Molecular Graphics and Modelling, 28(8):
904-910, June 2010.

•  W. Feng, Y. Cao, D. Patnaik, N. Ramakrishnan, “Temporal Data Mining for Neuroscience” in GPU Computing Gems,
Elsevier/Morgan-Kaufmann, Feb. 2011.

•  M. Daga, T. Scogland, W. Feng, “Towards Accelerating Molecular Modeling via Multi-Scale Approximation on a GPU,”
IEEE Int’l Conf. on Computational Advances in Bio and Medical Sciences (ICCABS), Feb. 2011.

•  M. Daga, A. Aji, W. Feng, “On the Efficacy of a Fused CPU+GPU Processor for Parallel Computing,” Symp. on Application
Accelerators in High-Performance Computing (SAAHPC), Jul. 2011.

•  M. Elteir, H. Lin, and W. Feng, “Performance Characterization and Optimization of Atomic Operations on AMD GPUs,”
IEEE Cluster, Sept, 2011.

•  M. Daga, T. Scogland, W. Feng, “Architecture-Aware Mapping and Optimization on a 1600-Core GPU,” IEEE Int’l Conf. on
Parallel and Distributed Systems (ICPADS), Dec. 2011.

•  M. Daga and W. Feng, “Multi-Dimensional Characterization of Electrostatic Surface Potential Computation on Graphics
Processors,” BMC Bioinformatics, 13(Suppl 5):S4, Apr. 2012.

•  F. Ji, A. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W. Feng, X. Ma, “DMA-Assisted, Intranode Communication in GPU-
Accelerated Systems,” IEEE International Conference on High-Performance Computing and Communications, Jun. 2012.

•  C. del Mundo, V. Adhinarayanan, W. Feng, “Accelerating FFT for Wideband Channelization.” IEEE ICC ’13, Jun. 2013.
•  C. del Mundo, W. Feng. “Enabling Efficient Intra-Warp Communication for Fourier Transforms in a Many-Core

Architecture”, SC|13, Nov. 2013.
•  C. del Mundo, W. Feng. “Towards a Performance-Portable FFT Library for Heterogeneous Computing,” ACM Computing

Frontiers, May 2014.

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

A sampling
of pubs …

synergy.cs.vt.edu-

Critique: Architecture-Aware Optimizations

•  Architecture
–  The Good: Two similar-generation GPUs are compared.
–  The Bad: The architectures are relatively old (circa 2008-2009).
The architectures served the purpose of demonstrating the importance
of architecture-aware optimizations.

•  Workload
–  The Good: A real application code (i.e., GEM – an n-body molecular

modeling code) is optimized
–  The Bad: Only one application code is optimized.
What would be the impact of the architecture-aware optimizations be on
other application workloads?

•  Manual Optimization " Automatic Optimization

© W. Feng, 2011-2015
Los Alamos National Laboratory

Still to do …

synergy.cs.vt.edu-

“Productivity = Performance + Programmability + Portability”

Most programmable
Most portable

Least programmable
Least portable

N-body
problem

20x

12x

175x

252x

160x

183x

885x

1,021x 1x

Least performance Most performance

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

“Productivity = Performance + Programmability + Portability”

Most programmable
Most portable

Least programmable
Least portable

N-body
problem

20x

12x

175x

252x

160x

183x

885x

1,021x 1x

Least performance Most performance

automate

Example: Stanford has ~ 1,000,000 CUDA SLOC that they
need to translate to OpenACC/OpenMP or OpenCL

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Roadmap

FUTURE#WORK#

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Paying For Performance

•  “The free lunch is over...” †

–  Programmers can no longer expect substantial increases in single-
threaded performance.

–  The burden falls on developers to exploit parallel hardware for
performance gains.

•  How do we lower the cost of concurrency?

© W. Feng, 2011-2015
Los Alamos National Laboratory

† H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,”
Dr. Dobb’s Journal, 30(3), March 2005. (Updated August 2009.)

synergy.cs.vt.edu-

The Berkeley View †

•  Traditional Approach
–  Applications that target existing

hardware and programming
models

•  Berkeley Approach
–  Hardware design that keeps

future applications in mind
–  Basis for future applications?

13 computational dwarfs
A computational dwarf is a pattern of
communication & computation that is
common across a set of applications.

© W. Feng, 2011-2015
Los Alamos National Laboratory

†--Asanovic,-K.,-et-al.-The'Landscape'of'Parallel'Compu@ng'Research:'A'View'from'Berkeley.-
Tech.-Rep.-UCB/EECS\2006\183,-University-of-California,-Berkeley,-Dec.-2006.--

Dense Linear
Algebra

Sparse Linear
Algebra

Spectral
Methods

N-Body
Methods

Structured
Grids

Unstructured
Grids

Monte Carlo "
MapReduce

Combinational Logic
Graph Traversal
Dynamic Programming
Backtrack & Branch+Bound
Graphical Models
Finite State Machine

and

synergy.cs.vt.edu-

Example of a Computational Dwarf: N-Body

•  Computational Dwarf: Pattern of computation & communication
 … that is common across a set of applications

•  N-body problems are studied in
–  Cosmology, particle physics, biology, and engineering

•  All have similar structures
•  An N-body benchmark can
 provide meaningful insight

 to people in all these fields
•  Optimizations may be
 generally applicable as well

© W. Feng, 2011-2015
Los Alamos National Laboratory

GEM:
Molecular Modeling

RoadRunner Universe:
Astrophysics

synergy.cs.vt.edu-

First Instantiation: OpenDwarfs
(formerly “OpenCL and the 13 Dwarfs”)-

•  Goal
–  Provide common algorithmic methods, i.e., dwarfs, in a language that is

“write once, run anywhere” (CPU, GPU, or even FPGA), i.e., OpenCL

•  Part of a larger umbrella project (2008-2018), funded by the
 NSF Center for High-Performance Reconfigurable Computing (CHREC)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Experimental Setup: Hardware

Multicore CPU:
AMD Opteron 6272

GPU (discrete):
AMD Radeon HD 7970

Intel Many Integrated
Core (MIC) Co-processor:
Intel Xeon Phi P1750

Field Programmable
Gate Array (FPGA):
Xilinx Virtex-6 LX760, 1 GB
DRAM, PCIx connectivity

a) AMD Llano A8-3850
(Llano)

Multicore CPU: AMD Llano A8-3850
Integrated GPU (iGPU): AMD Radeon HD
6550D

K. Krommydas, W. Feng, … “On the Characterization of OpenCL Dwarfs on
Fixed and Reconfigurable Platforms,” 25th IEEE Int’l Conf. on Application-specific
Systems, Architectures and Processors (ASAP), June 2014. Best Paper Finalist

b) AMD Llano A10-5800K
(Trinity)

Multicore CPU: AMD Llano A10-5800K
Integrated GPU (iGPU): AMD Radeon HD
7660D

Accelerated Processing Units (APUs):

synergy.cs.vt.edu-

Experimental Setup: Software

AMD CPU/GPU/APU: 64-bit Debian
Linux 7.0 (Kernel 2.6.37), AMD APP SDK
2.8, AMD Catalyst 13.1
Intel Xeon Phi: CentOS 6.3, Intel
OpenCL SDK XE 2013
FPGA: Ubuntu 12.04, Xilinx ISE 12.4

Intel Vtune
Amplifier XE 2013

OpenDwarfs
- GEM (N-body methods)
- NW (Dynamic programming)
- SRAD (Structured grids)
- BFS (Graph traversal)

AMD CPU/GPU/APU:

Intel Xeon Phi:

AMD CodeXL 1.3

Profiling tools

Host systems

Benchmarks

K. Krommydas, W. Feng, … “On the Characterization of OpenCL Dwarfs on
Fixed and Reconfigurable Platforms,” 25th IEEE Int’l Conf. on Application-specific
Systems, Architectures and Processors (ASAP), June 2014. Best Paper Finalist

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

ACM ICPE ’12:
OpenCL & the 13 Dwarfs

IEEE Cluster ’11, FPGA ’11,
IEEE ICPADS ’11, SAAHPC ’11,

IEEE ICPADS ’13, IEEE ASAP ’14*

Productivity = Performance + Programmability + Portability

* K. Krommydas, W. Feng, M. Owaida, C. Antonopoulos, N. Bellas, “On the Characterization of OpenCL
Dwarfs on Fixed and Reconfigurable Platforms, 25th IEEE Int’l Conf. on Application-specific Systems,
Architectures and Processors (ASAP), June 2014. Best Paper Finalist

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Performance & Power Modeling

•  Goals
–  Robust framework
–  Very high accuracy (Target: < 5% prediction error)
–  Identification of portable predictors for performance and power
–  Multi-dimensional characterization

!  Performance " sequential, intra-node parallel, inter-node parallel
!  Power " component level, node level, cluster level

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Problem Formulation:
LP-Based Energy-Optimal DVFS Schedule

•  Definitions
–  A DVFS system exports n { (fi, Pi) } settings.
–  Ti : total execution time of a program running at setting i

•  Given a program with deadline D, find a DVS schedule (t1*, …,
tn*) such that
–  If the program is executed for ti seconds at setting i, the total energy usage E is

minimized, the deadline D is met, and the required work is completed.

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Single-Coefficient β Performance Model"

•  Our Formulation
–  Define the relative performance slowdown δ as
 T(f) / T(fMAX) – 1
–  Re-formulate two-coefficient model

 as a single-coefficient model:

–  The coefficient β is computed at run-time using a regression method on the
past MIPS rates reported from the built-in PMU.

© W. Feng, 2011-2015
Los Alamos National Laboratory

C.-Hsu-and-W.-Feng.-
“A-Power\Aware-Run\Time-
System-for-High\Performance-
CompuEng,”-SC|05,'Nov.-2005.-

synergy.cs.vt.edu-

β – Adaptation on NAS Parallel Benchmarks

C. Hsu and W. Feng.
“A Power-Aware Run-Time System
for High-Performance Computing,”
SC|05, Nov. 2005.

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Need for Better Performance & Power Modeling

•  S

© W. Feng, 2011-2015
Los Alamos National Laboratory

Source: Virginia Tech

synergy.cs.vt.edu-

Search for Reliable Predictors

•  Re-visit performance counters used for prediction
–  Applicability of performance counters across generations of

architecture

•  Performance counters monitored
–  NPB and PARSEC benchmarks
–  Platform: Intel Xeon E5645 CPU (Westmere-EP)

© W. Feng, 2011-2015
Los Alamos National Laboratory

Context switches (CS) Instruction issued (IIS)

L3 data cache misses (L3 DCM) L2 data cache misses (L2 DCM)

L2 instruction cache misses (L2 ICM) Instruction completed (TOTINS)

Outstanding bus request cycles
(OutReq)

Instruction queue write cycles
(InsQW)

synergy.cs.vt.edu-

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

ACM/IEEE SC ’05
ICPP ’07

IEEE/ACM CCGrid ’09
IEEE GreenCom ’10

ACM CF ’11
IEEE Cluster ’11

ISC ’12
IEEE ICPE ’13*

* B. Subramaniam and W. Feng, “Towards Energy-Proportional Computing for Enterprise-Class Server
Workloads,” 3rd ACM/SPEC Int’l Conf. on Performance Engineering, April 2013. Best Paper Award

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

Productivity = Performance + Programmability + Portability

Performance Portability

Performance Portability

synergy.cs.vt.edu-

What is Heterogeneous Task Scheduling?

•  Automatically spreading tasks across heterogeneous compute
resources
–  CPUs, GPUs, APUs, FPGAs, DSPs, and so on

•  Specify tasks at a higher level (currently OpenMP extensions)
•  Run them across available resources automatically

•  A run-time system that intelligently uses what is available
resource-wise and optimize for performance portability
–  Each user should not have to implement this for themselves!

© W. Feng, 2011-2015
Los Alamos National Laboratory

Goal

synergy.cs.vt.edu-

OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel …

#pragma omp acc_region …

Kernels

© W. Feng, 2011-2015
Los Alamos National Laboratory

Implicit barrier

synergy.cs.vt.edu-

DESIRED OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

© W. Feng, 2011-2015
Los Alamos National Laboratory

#pragma omp parallel num_threads(2)

#pragma omp acc_region …

#pragma omp parallel …

synergy.cs.vt.edu-

Work-share a Region Across the Whole System

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp acc_region …

#pragma omp parallel …

OR

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Heterogeneous Task Scheduling

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

How to Heterogeneous Task Schedule (HTS)

•  Accelerated OpenMP can offer heterogeneous task scheduling
with
–  Programmability
–  Functional portability, given underlying compilers
–  Performance portability

•  How?
–  A simple extension to Accelerated OpenMP syntax for programmability
–  Automatically dividing parallel tasks across arbitrary heterogeneous

compute resources for functional portability
!  CPUs
!  GPUs
!  APUs

–  Intelligent runtime task scheduling for performance portability

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Programmability:
Code Transformation
•  Manual

–  Add 20 lines
–  Must manually split problem and reassemble results

•  Automatic
–  Add 1 clause
–  Splitting and assembly are automatic

pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl) default(none) \

acc_copyin(fc[0:ncl*nco]) present(fo) \

acc_copyout(m[0:no])

// hetero(1,dynamic)

for (i=0; i<no; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

1

Our Proposed Extension

Manual

splitter * s = split_init(no, SPLIT_DYNAMIC, NULL, NULL);

int *m_c = (int*)malloc(sizeof(int)*no);

for(int d_it=0; d_it < s->d_end; d_it++)

{

s = split_next(no, d_it);

pragma omp parallel num_threads(2)

{

if(omp_get_thread_num()>0)

{//CPU OpenMP code

split_cpu_start(s);

pragma omp parallel shared(fo,fc,m_c,s) \

num_threads(omp_get_thread_limit()-1) \

firstprivate(no,ncl,nco) private(i)

{

pragma omp for

for (i=s->cts; i<s->cte; i++) {

m_c[i] = findc(no,ncl,nco,fo,fc,i);

}

}

split_cpu_end(s);

}else{//GPU OpenMP code

split_gpu_start(s);

int gts = s->gts, gte = s->gte;

pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl,gts,gte)\

acc_copyin(fc[0:ncl*nco]) \

acc_copyout(m[0:no]) \

present(fo) default(none)

for (i=gts; i<gte; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

split_gpu_end(s);

}

}

}

memcpy(m+s->d_ccs,m_c+s->d_ccs,

(s->d_cce-s->d_ccs)*sizeof(int));

free(m_c);

1

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

CoreTSAR: Scheduling and Load-Balancing by Adaptation

•  Measure computational suitability at runtime
•  Compute new distribution of work through a linear

optimization approach
•  Re-distribute work before each pass

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-

3 2013/1/6

CoreTSAR: Task-Size Adapting Runtime A:7

Original With GPU back−off

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Adaptive
Split

1 2 3 4 1 2 3 4
Number of GPUs

Pe
rc

en
ta

ge
 o

f t
im

e
in

 e
ac

h
ph

as
e

Program phase Compute Scheduling

(a) Percentage of time spent on computation
and scheduling

min(
n�1X

j=1

t+j + t�j) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Heterogeneous Scheduling: Issues and Solutions

•  Issue: Launching overhead is high on GPUs
–  Using a work queue, many GPU kernels may need to be run

•  Solution: Schedule only at the beginning of a region
–  The overhead is only paid once or a small number of times

•  Issue: Without a work queue, how do we balance load?
–  The performance of each device must be predicted

•  Solution: Allocate different amounts of work
–  For the first pass, predict a reasonable initial division of work. We use

a ratio between the number of CPU and GPU cores for this.
–  For subsequent passes, use the performance of previous passes to

predict following passes.

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Benchmarks

•  NAS CG – Many passes (1,800 for C class)
–  The Conjugate Gradient benchmark from the NAS Parallel

Benchmarks

•  GEM – One pass
–  Molecular Modeling, computes the electrostatic potential along the

surface of a macromolecule

•  K-Means – Few passes
–  Iterative clustering of points

•  Helmholtz – Few passes, GPU unsuitable
–  Jacobi iterative method implementing the Helmholtz equation

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Experimental Setup

•  System
–  12-core AMD Opteron 6174 CPU
–  NVIDIA Tesla C2050 GPU
–  Linux 2.6.27.19
–  CCE compiler with OpenMP accelerator extensions

•  Procedures
–  All parameters default, unless otherwise specified
–  Results represent five or more runs

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

CoreTSAR Results Across Schedulers

Application

Sp
ee

du
p

ov
er

 1
2−

co
re

 C
PU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cg

cg

0

2

4

6

8

gem

gem

0.0

0.2

0.4

0.6

0.8

1.0
helmholtz

helmholtz

0.0

0.5

1.0

1.5

kmeans

kmeans

Scheduler
CPU GPU Static Dynamic Split Quick

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Roadmap

© W. Feng, 2011-2015
Los Alamos National Laboratory

IEEE IPDPS ’12
ISC ’14

IEEE TPDC ’14

Productivity = Performance + Programmability + Portability

synergy.cs.vt.edu-

Roadmap

Much work still to be done.
•  OpenCL and the 13 Dwarfs Beta release pending
•  Source-to-Source Translation CU2CL only & no optimization
•  Architecture-Aware Optimization Only manual optimizations
•  Performance & Power Modeling Preliminary & pre-multicore
•  Affinity-Based Cost Modeling Empirical results; modeling in progress
•  Heterogeneous Task Scheduling Preliminary with OpenMP

© W. Feng, 2011-2015
Los Alamos National Laboratory

An Ecosystem for
Heterogeneous
Parallel Computing

^

synergy.cs.vt.edu-

An Ecosystem for Heterogeneous Parallel Computing

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

Avionic
Composites

Applications

Intra-Node

^

© W. Feng, 2011-2015
Los Alamos National Laboratory

… from intra-node … to inter-node …

synergy.cs.vt.edu-

Programming CPU-GPU Clusters (e.g., MPI+CUDA)

GPU-
device-
memory-

GPU-
device-
memory-

CPU-
main-

memory-

CPU-
main-

memory-

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 cudaMemcpy(host_buf, dev_buf, D2H)
 MPI_Send(host_buf,)
}

if(rank == 1)
{
 MPI_Recv(host_buf,)
 cudaMemcpy(dev_buf, host_buf, H2D)
}

Node 1 Node 2

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Goal of Programming CPU-GPU Clusters (MPI + Any Acc)

GPU-
device-
memory-

GPU-
device-
memory-

CPU-
main-

memory-

CPU-
main-

memory-

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 MPI_Send(any_buf,);
}

if(rank == 1)
{
 MPI_Recv(any_buf,);
}

© W. Feng, 2011-2015
Los Alamos National Laboratory

IEEE HPCC ’12
ACM HPDC ‘13

synergy.cs.vt.edu-

“Virtualizing” GPUs …

Compute Node

Physical
GPU

Application

Native OpenCL Library

OpenCL API

Traditional Model

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API

Our Model

Native OpenCL Library
Compute Node

Virtual GPU

Application

VOCL Library

OpenCL API

MPI

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API Native OpenCL Library

Virtual GPU
MPI

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Heterogeneous HPC @ VT

–  CPU+GPU (i.e., “left brain”+”right brain”)
heterogeneous supercomputer
with large-scale visualization wall

–  Peak Performance
!  455 trillion floating-point operations / second

–  Debuted as the GREENEST
 commodity supercomputer
 in the U.S. in Nov. 2011

–  Cost: ~ $1M (vs. $1250M for K Computer)

HokieSpeed Viz Wall
(Eight 46” 3D HDTVs)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-
© W. Feng, 2011-2015

Los Alamos National Laboratory

synergy.cs.vt.edu-

Funding Acknowledgements

© W. Feng, 2011-2015
Los Alamos National Laboratory

Microsoft featured our “Big Data in the Cloud”
grant in U.S. Congressional Testimony

synergy.cs.vt.edu-

Conclusion
•  An ecosystem for heterogeneous parallel computing

–  Enabling software that tunes parameters of hardware devices
… with respect to performance, programmability, and portability
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps

Highest-ranked commodity supercomputer
in U.S. on the Green500 (11/11)

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Microsoft Cloud Commercial:

Data-Intensive Biocomputing in the Cloud

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

Microsoft Cloud Infomercial:

Data-Intensive Biocomputing in the Cloud

© W. Feng, 2011-2015
Los Alamos National Laboratory

synergy.cs.vt.edu-

http://synergy.cs.vt.edu/

http://www.mpiblast.org/

http://sss.cs.vt.edu/

http://www.green500.org/

http://myvice.cs.vt.edu/

http://www.chrec.org/

http://accel.cs.vt.edu/

“Accelerators ‘R Us” !

Wu#Feng,#wfeng@vt.edu,#540;231;1192#

© W. Feng, 2011-2015
Los Alamos National Laboratory

